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A Simulation Algorithm to Approximate
the Area of Mapped Forest Inventory Plots

William A. Bechtold, Naser E. Heravi, and Matthew E. Kinkenon

Abstract

Calculating the area of polygons associated with mapped forest inventory
plots can be mathematically cumbersome, especially when computing
change between inventories. We developed a simulation technique that
utilizes a computer-generated dot grid and geometry to estimate the area of
mapped polygons within any size circle. The technique also yields a matrix
of change in mapped-plot area between two points in time.

Keywords: Area transition matrix, condition class, forest inventory,
mapped plots, plot area calculation.

Introduction

The U.S. Department of Agriculture, Forest Service, Forest
Inventory and Analysis (FIA) Program utilizes a mapped,
fixed-plot design as part of their national core sampling
protocols (Hahn and others 1995). Each ground plot
contains a cluster of four points spaced 120 feet apart. Each
point is surrounded by a 24-foot fixed-radius subplot where
trees 5.0-inches diameter at breast height (d.b.h.) and larger
are measured. Data are also gathered about the area, or
setting in which the trees are located. To enhance analysis, it
is important that the tree data recorded on these plots are
properly associated with the area classifications. To
accomplish this, plots are mapped by “condition class” (U.S.
Forest Service 2000).1 Field crews assign an arbitrary
number, usually 1, to the first condition class encountered
on a plot. This number is then characterized by a series of
predetermined variables attached to it (e.g., forest type,
stand size, and stand age). Additional condition classes are
identified if there is a distinct change in any of the
condition-class variables on the plot.

Sometimes a plot straddles two or more distinct conditions.
Boundaries usually occur between the subplots, but
occasionally bisect the subplots, in which case they are
mapped. When mapping a subplot, field crews first specify
and define (if not previously defined) the condition class at

subplot center. If a subplot straddles two or more conditions,
they specify the condition class that contrasts with the
condition at subplot center. Standing at subplot center and
facing the contrasting condition, they then record the two
azimuths where the boundary crosses the subplot perimeter.
A third azimuth, with a distance, is permissible if the
boundary contains a sharp curve or a corner. All trees tallied
are then assigned to the condition class in which they occur.
Figure 1 shows the data elements recorded for each subplot
boundary: center condition number, contrasting condition
number, left azimuth, right azimuth, and corner azimuth and
distance. By convention, left and right azimuths are always
assigned from the crew’s perspective at subplot center (i.e.,
left to right is always clockwise on the subplot perimeter),
the maximum angle between left and right is 180o (unless a
corner point has been identified), and boundary lines are not
permitted to cross. Corner azimuths and distances are
optional.

Given the available boundary data, the area in each resulting
polygon can be computed mathematically (Scott and
Bechtold 1995). However, when subplot maps from two
different points in time are overlaid for the purpose of
computing change in area among forest conditions (i.e.,
transition matrices), the mathematics can become unwieldy.
This paper describes a simulation technique that
approximates the area of all polygons mapped within any
size circle, as well as the transition matrix between two
points in time.

1 U.S. Department of Agriculture, Forest Service. 2000. Forest inventory
and analysis national core field guide, volume 1: field data collection
procedures for phase 2 plots, vers. 1.4. Washington Office. Internal
report. On file with: U.S. Department of Agriculture, Forest Service,
Forest Inventory and Analysis, 201 14th St., Washington, D.C. 20250.
htttp://fia.fs.fed.us/library.htm#manuals. [Date accessed: April 22, 2003].

Figure 1—Using azimuths to reference a boundary between condition 1
and condition 2 to subplot center.
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Methods

A. A uniform dot grid of a specified number of points (e.g.,
100,000) is superimposed on a unit circle. The density of
grid points depends on the precision and computer speed
required by the user.

B. All boundary data recorded in the field are converted to
Polar and Cartesian coordinates on a unit circle.

C. Each contrasting condition class (i.e., mapped polygon)
is associated with the boundary segments that surround it
(e.g., its arc on the perimeter plus one boundary line if it
has no corner; or its arc on the perimeter plus two
boundary lines if it has a corner).

D. Rays are projected horizontally in one direction from
each simulated grid point to the perimeter of the unit
circle. Logic is used to assign each grid point to a
condition class based on the number of times its pro-
jected ray crosses a boundary segment.

E. The number of grid points associated with each condi-
tion is then tallied, yielding percentages by condition
class after all grid points are counted.

Generating the Dot Grid

The dot grid is generated by first calculating the distance

D( ) between grid points on a unit-circle with a radius of 1:

(1)

where

n =  the number of grid points to be generated.

Grid points Gp( )  can then be created two to four at a time
using symmetry in a loop as in the fragment of code shown
below:

G1 0 0= ( ), ; * assign grid-point 1 to origin;
p = 2; * initialize grid-point counter;
x = 0; y = 0; *  initialize x  and y  coordinates;

Loop from 1 to n;
x x D= + ;
if x y2 2 1+ >  then do; * check for edge of circle,

restart grid on y-axis;

y y D= + ; x = 0;
end;

if y > 1 then end loop; * check for end of loop at
top of y-axis;
if y = 0 then do; * generate grid points 2 at a time
on x-axis;

G x y p pp = ( ) = +, ; ;1

G x y p pp = -( ) = +, ; ;1
end;
if x = 0 then do; * generate grid points 2 at a time
on y-axis;

G x y p pp = ( ) = +, ; ;1

G x y p pp = -( ) = +, ; ;1
end;
if ( x 0π ) and ( y 0π ) then do; * generate grid points
4 at a time off axes;

G x y p pp = ( ) = +, ; ;1

G x y p pp = -( ) = +, ; ;1

G x y p pp = -( ) = +, ; ;1

G x y p pp = - -( ) = +, ; ;1
end;

End Loop;

p p= - 1; * final grid-point count.

Note that grid points only have to be generated once. After a
suitable grid density is established, the same array of grid
points can be stored and used for boundary checks on any
subplot.

Boundary Coordinates

The azimuths used to map FIA plots do not conform to
conventional geometry. FIA boundaries are referenced to
azimuth readings where 0o is due north, with angles of
increasing degrees proceeding in a clockwise direction. In
the geometric polar system the 0o mark is at due east, with
angles of increasing degrees proceeding in a counter-
clockwise direction (fig. 2).

In order to apply conventional geometry techniques to FIA
boundaries, FIA azimuths are converted to the geometric
polar system. The following equation can be used to
accomplish the conversion:

    
                              (2)

D
n

=
p

q q= - + -360 90F Q
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The Cartesian coordinates of boundary points associated
with a corner point are

x C= ( )¢ cosq , and

y C= ( )¢ sinq ,

where

C C R¢ = / .

All discussion hereafter is based on polar and Cartesian
coordinates in terms of a unit circle.

Establishing Boundary Segments

Each contrasting condition class is associated with the two
or three boundary segments that border it: its arc on the
perimeter plus one boundary line (if no corner present), or
its arc on the perimeter plus two boundary lines (if corner
present).

The boundary arc—The range of the boundary arc on the
subplot perimeter of a unit circle includes all coordinate
points between qL( )  and qR( ). For contrasting condition 2
in figure 3, the boundary arc includes all points on the arc
q qL R2 2.

Boundary line without corner—The range of a boundary
line with no corner point includes all points that lie along
the line segment with endpoints qL( )and qR( ). For
contrasting condition 2 in figure 3, the boundary line
includes all points on the line segment q qL R2 2.

Boundary line with corner—A boundary with a corner
point implies two boundary lines. The range of each is
computed in the same manner as the single boundary (with
no corner) as described above, except that both are truncated
at the point of intersection (i.e., the corner):

Figure 2—FIA azimuth readings and the geometric polar system.

where

q =the polar angle,
qF =  the FIA azimuth, and

Q = 360 if qF £ 90; 0 otherwise.

The points at which the left and right boundary azimuths
cross the arc of the subplot are thus defined as the polar
coordinates R L,q( )  and R R, ,q( )  and the location of the
boundary corner point, if any, is defined as C C, .q( )
where

qL =  the polar left angle,

qR =  the polar right angle,

qC =  the polar corner angle,

R =  the subplot radius, and

C =  the corner distance.

Cartesian x y,( ) coordinates are easily obtained from the

polar coordinates

x R= ( )cos ,q  and

y R= ( )sin .q

Note that most computer trigonometric functions require the
argument to be specified in radians, so q  may need to be
converted to radians before applying sin and cos computer
functions (i.e., multiply by

When placed on a unit-circle basis, the Cartesian
coordinates of FIA boundary points on the perimeter of the
circle are

x = 1 cosq( ) , and

y = 1 sin .q( )

p / ).180
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Segment 1 has end points qL( )and C C¢, .q( )
Segment 2 has end points qR( ) and C C¢, .q( )
For contrasting condition 2 in figure 4, segment 1 includes
all points on line segment q qL CC2 2 2¢ , ,( )  and segment 2
includes all points on line segment q qR CC2 2 2¢ , .( )
Projecting Rays

After the range of each boundary segment associated with a
contrasting condition class has been established, rays are
projected horizontally in one direction (to the right) from
each superimposed grid point to the circle perimeter. The
following logic is then applied:

• If the ray projected from a grid point crosses the boundary
segments (line or arc) of a contrasting condition class an
odd number of times, then that point must be located
within the contrasting condition.

• If the ray crosses the boundary segments an even number
of times (or not at all), then that point cannot be located
within that contrasting condition class.

• If the point is not located within any contrasting condition
class, it is associated with the center condition class.

Figure 3 shows a center condition class bounded on either
side by two contrasting condition classes. This situation is
common when a road crosses a subplot. The boundary
segments associated with contrasting condition 2 are line
segment q qL R2 2 and arcq qL R2 2. The boundary segments
associated with contrasting condition 3 are line segment
q qL R3 3 and arc q qL R3 3. The horizontal ray projected from
grid-point G1 crosses boundary segments of condition 3
once (line segment q qL R3 3), so grid-point G1 is assigned to
condition 3. The horizontal ray projected from grid-point G2

Figure 3—Projecting grid-point rays across a center condition
bordered by two contrasting conditions.

Figure 4—Projecting grid-point rays across a contrasting condition
with a corner point.

crosses boundary segments of condition 2 twice (line
segment q qL R2 2 and arc q qL R2 2), so grid-point G2 is not
assigned to condition 2 (or any other contrasting condition).
Grid-point G2 is thus assigned to the center condition class
(condition 1) by default. Grid-point G4  is also assigned to
the center condition class because its projected ray crosses
no contrasting-condition boundary segments. The horizontal
ray projected from grid-point G3 crosses boundary segments
of condition 2 once (arc q qL R2 2), so grid-point G3 is
assigned to condition 2.

The boundary segments associated with contrasting
condition 2 in figure 4 are line segment q qL CC2 2 2¢ , ,( )  line
segment q qR CC2 2 2¢ , ,( )  and arc q qL R2 2. The horizontal ray
projected from grid-point G1 crosses boundary segments of
condition 2 once (line segment                         so grid-point
G1 is assigned to condition 2. The horizontal ray projected
from grid-point G2 crosses boundary segments of condition
2 twice (line segments q qL CC2 2 2¢ , ,( ) and                        so
grid-point G2 is not assigned to condition 2 or any other
contrasting condition. Grid-point G2 is therefore assigned to
center condition 1 by default. Grid-point G3 is also assigned
to the center condition because its projected ray crosses no
contrasting-condition boundary segments.

Rather than assigning grid points to the center condition by
default, the center condition could be actively defined by the
lines and arcs that encompass it. The same logic used to
assign grid points to contrasting conditions would then
apply to center conditions. This provides some measure of
safety by enabling checks for programming errors resulting
in the failure to assign a grid point to any polygon.
However, because center conditions are not actively defined
in the field, identification of the lines and arcs that contain
them is difficult, which increases the complexity of the
algorithm and adds another potential source of error.

q qR CC2 2 2¢ , ),( )

q qR CC2 2 2¢ , ),( )
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Nested Boundary Segments

It is possible for one contrasting condition to be completely
nested within another. Figure 5 shows a case where
contrasting condition 2 (bounded by line segment q qL R2 2

and arc q qL R2 2) contains contrasting condition 3 (bounded

by line segment q qL CC3 3 3¢ , ,( )  line segment q qR CC3 3 3¢ , ,( )
and arc q qL R3 3)). When contrasting conditions are nested,
rays projected from a grid point inside the nested condition
result in assignment of that point to both the nested
condition and the larger condition surrounding it. A check
must therefore be made to determine if contrasting
conditions are nested. If so, then any grid points located in
both are assigned only to the smaller, nested condition.

Transition Matrix

Change matrices are necessary to quantify changes in area
by condition class, and to enable the partitioning of growth,
removals and mortality by condition-class parameters at
either the initial or terminal inventory of a measurement
cycle. Visually, a condition-class transition matrix is
produced by overlaying a map of each subplot at time t with
a similar map of the same subplot at time t+1 (fig. 6).
Actually, the area associated with the intersection of all
combinations of condition classes is calculated by
simultaneously solving each simulated grid point for time t
and time t+1. For each cell of the intersection matrix, an
observation is created that includes area percent, as well as
all of the condition-class variables at both time t and time
t + 1. Note that it is not necessary for field crews to retain
specific condition-class numbers over time. Numbers
assigned to conditions remain arbitrary and are defined by
the series of condition-class variables attached to them.

Algorithm Details

The algorithm used to perform the required logic checks at a
given point in time consists of three main parts:

A. Determine if a ray projected from a grid point intersects
a boundary arc.

B. Determine if a ray projected from a grid point intersects
a boundary line segment.

C. Determine if a contrasting condition class is nested
within another contrasting condition class.

There are a variety of ways these checks can be
accomplished with polar coordinates and/or Cartesian
coordinates. One method for each check is explained below.

Figure 6—Example of condition classes at time t, time t + 1, and associated transition matrix.

Figure 5—Example of a nested contrasting condition class (condition
3 within condition 2).
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Keep in mind that the left and right boundary points on the
circle perimeter are always recorded from left to right in a
clockwise direction, the maximum arc between two
boundary points on the circle perimeter is 180o (unless
associated with a corner point) and boundary line segments
are not permitted to cross.

Determine if a projected ray intersects a boundary arc—

Given:

qL =  the left polar angle of the contrasting condition class.

qR =  the right polar angle of the contrasting condition class.

qC =  the corner polar angle of the contrasting condition
class, if any.

X YL L,( ) =  the Cartesian coordinates of the left boundary

point on a unit circle.

X YR R,( ) =  the Cartesian coordinates of the right boundary

point on a unit circle.

X YC C,( ) =  the Cartesian coordinates of the corner boundary

point on a unit circle.

X YG G,( ) =  the Cartesian coordinates of the grid point to be

checked.

Problem:

Determine if a ray (with 0 slope) projected to the right of

grid point X YG G,( )  intersects the arc on a unit circle between

boundary points X YL L,( )  and X YR R, .( )
Solution:

A. Determine if the arc q qL R £  180o.
Field protocols require that the arc between
qL  and qR  must be £  180o unless a corner point is
involved. Additional checks are necessary if the arc
exceeds 180o. Arc q qL R  

can be checked as follows:

1.  arc q q q qL R L R= - .

2.  if arc q qL R < 0 then arc q qL R =  arc q qL R + 360 (to
correct for quadrant).

3.  if arc q qL R > 180, go to step C.

B. Check for grid-point ray and arc intersection if arc
q qL R £ 180.

If XL < 0  and XR < 0 the arc originates and terminates on
the left side of the circle, and the projected ray cannot cross
the arc. However, if XL ≥ 0  or XR ≥ 0, the following
additional checks must be made.

A ray with 0 slope projected to the right of grid point (X
G
,

Y
G
) intersects the circle at the point on the y axis where y =

Y
G
. To determine if YG  is contained within the boundary arc,

Y
max

 and Y
min

 must be identified,

where

Y
max

 = the maximum y-value of the boundary arc on the
right half of the circle.
Y

min
 = the minimum y-value of the boundary arc on the right

half of the circle.

The following logic is used to establish Y
max

 and Y
min

 and
check for intersection:

1.  if XL £ 0 and XR ≥ 0  (i.e., boundary arc originates
on the left side and terminates on the right side of the
circle) then

Y
max  

= 1 (i.e., the arc includes the top of the circle);

and

Y
min  

= Y
R
.

2.  if XL ≥ 0 (i.e., boundary arc originates on right side
of circle) then Y

max  
= Y

L
; and

a. if XR £ 0 then Y
min  

= -1 (i.e., the arc includes the
bottom of the circle); or

b. if XR ≥ 0 then Y
min  

= Y
R
.

3. After Y
max

 and Y
min

 are established, the following
logic completes the check: if Y

min  
<  Y

G  
<  Y

max
 then

the grid-point ray intersects a boundary arc on the
right half of the circle; otherwise it does not.

C. Check for grid-point ray and arc intersection if arc

q qL R > 180.

If a boundary arc exceeds 180o (due to a corner point), it is
possible for a contrasting condition to have two separate
arcs on the right side of the circle. For example, arc q qL R2 2

in figure 7 is greater than 180o, resulting in arcs qR 2 90

andqL 2270 on the right side.

1.  If XL ≥ 0 and XR ≥ 0 (i.e., boundary arc originates
and terminates on the right side of the circle), then
there are two arcs associated with the condition. Both
arcs must then be checked as described in step B3
above, after establishing their maximum and
minimum y values:

Y
max1 

= YL ;
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Y
min1  

= -1 (i.e., the arc includes the bottom of the
circle);

Y
max2 

= 1 (i.e., the arc includes the top of the circle);

and

Y
min2 

= YR .

2.  If XL ≥ 0 and XR £ 0 (i.e. boundary arc originates
on the right side of the circle and terminates on the
left), only one arc needs to be checked, where

Y
max  

= YL ; and
Y

min  
= -1 (i.e., the arc includes the bottom of the

circle).

3. If XL £ 0 and               (i.e., boundary arc originates
on the left side of the circle and terminates on the
right), only one arc needs to be checked, where

Y
max 

= 1 (i.e., the arc includes the top of the circle);
and
Y

min  
= YR .

       4. If XL £ 0 and               (i.e., the arc originates and
terminates on the left side of the circle), the
boundary arc encompasses the entire right side of
the circle, so

Y
max  

= 1; and
Y

min   
= -1.

       5. The same logic specified in step B3 above is used to
check for ray and arc intersection. If a boundary
results in two arcs, both must be checked.

Determine if a projected ray intersects a boundary line
segment—

Given:

X YL L,( )  = the Cartesian coordinates of the left boundary

point on a unit circle.

X YR R,( )  = the Cartesian coordinates of the right boundary

point on a unit circle.

X YC C,( )  = the Cartesian coordinates of the corner point, if

any, on a unit circle.

X YG G,( )  = the Cartesian coordinates of the grid point to be

checked.

Problem:

Determine if a horizontal ray projected to the right of grid
point X YG G,( )  intersects the boundary line segment between
boundary X YL L,( )  and X YR R,( ) .

Note: if the boundary line is a segment involving a corner
point, then X YC C,( )  would be substituted for X YL L,( )  and

X YR R,( )  as appropriate.

Solution:

The equation of a line with slope m  and intercept k  is

y mx k= + . In terms of Cartesian coordinates, the slope of
a boundary line segment is

                    (3)

Once m  is obtained, the intercept can be found by solving

k  for either pair of x y,( ) coordinates

                    (4)

The x-coordinate of the intersection of any two lines Xi( ) is

defined by the equation

                    (5)

where

k1  = the intercept of line 1,

m1 = the slope of line 1,

k2   = the intercept of line 2, and

m2 = the slope of line 2.

Figure 7—Example of a contrasting condition class where arc

q qL R2 2 > 180o, resulting in two arcs on the right side.

m
Y Y

X X
L R

L R

=
-
-

k Y mXL L= -

Xi =
-

-
k k

m m
2 1

1 2

XR £ 0

XR £ 0
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The y-coordinate of the point of intersection of two lines

Yi( )  is defined by the equation

                                  (6)

The problem can then be solved as follows:

A. Establish the maximum and minimum y-coordinates for
the boundary line segment:

Y
max

 = maximum Y YL R,( )
Y

min
 = minimum Y YL R,( ) .

B. Determine the x-coordinate for the point of intersection
Xi( ) between the boundary line and the horizontal line

generated from the grid point X YG G,( ) . Xi is obtained
by substituting the following values into equation (5):

k1 =   
the intercept of the boundary line,

m1 =  
the slope of the boundary line,

k YG2 =  (the intercept of the horizontal line through the
grid point), and

m2 0=  (the slope of the horizontal line through the grid
point).

C. Apply the following logic to determine if XG  is to the
left of the boundary line, and within the range of the y-
values of the boundary line segment:

if X XG i£  and Y
min 

 < Y
G 

 <  Y
max

, then the ray

extending to the right of X YG G,( )  and the boundary line

segment intersect. Otherwise, they do not.

Note that equations (5) and (6) can also be used to ensure
that two boundary line segments do not intersect within the
unit circle:

if - <1 1< Xi  and - < <1 1Yi , then the boundary line
segments intersect inside the circle and there is an error in
the field data.

Determine if contrasting condition classes are nested—

Nesting can be identified by checking the arcs of contrasting
conditions on the circle perimeter.

Given:

qL  
= the left polar angle of the contrasting condition class

with the longer arc on a unit circle.

qR  
= the right polar angle of the contrasting condition class

with the longer arc on a unit circle.

¢qL= the left polar angle of the contrasting condition class
with the shorter arc on a unit circle.

¢qR = the right polar angle of the contrasting condition class
with the shorter arc on a unit circle.

Problem:

Determine if the arc q qL R  
contains the arc ¢ ¢q qL R.

Solution:

A. if q qL R<   
then q qL L= + 360 (to correct for

quadrant).

B. if q q¢ < ¢L R  then q q¢ ¢L =  L + 360 (to correct for
quadrant).

C. if q q q qL L≥ > ≥¢ ¢ R R  then the arc q qL R  
contains the

arc ¢ ¢q qL R,and the conditions are nested. Otherwise,
they are not.

Additional considerations—It is possible that a boundary
line segment recorded in the field produces a vertical line
with an undefined slope (i.e., X XL R= ). This problem can
be circumvented by adding 5o to all azimuths recorded for
all boundary segments, which has the effect of slightly
rotating the subplot without changing the relative area
assigned to each condition class. For any given subplot, axes
must be rotated similarly at both time t and time t+1 when
computing change matrices.

Conclusions

A variety of mathematical and simulation techniques can be
used to compute the area of mapped-plot polygons. The
advantage of the simulation approach outlined here is that it
can be applied to any polygon defined by a series of lines
and arcs, without regard to polygon shape. This feature is
especially useful when computing change, since an infinite
number of shapes are possible when a subplot mapped at
time t is overlaid with its counterpart at time t+1.
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